Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power.
نویسندگان
چکیده
We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping the possible thermal side-effects of the excitation light moderate. These key results facilitate means to break through the general shallow depth limit of upconverting-nanoparticle-based fluorescence techniques, necessary for a range of biomedical applications, including diffuse optical imaging, photodynamic therapy and remote activation of biomolecules in deep tissues.
منابع مشابه
Engineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)
Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...
متن کاملUpconversion Nanoparticles: A Versatile Solution to Multiscale Biological Imaging
Lanthanide-doped photon upconverting nanomaterials are emerging as a new class of imaging contrast agents, providing numerous unprecedented possibilities in the realm of biomedical imaging. Because of their ability to convert long-wavelength near-infrared excitation radiation into shorter-wavelength emissions, these nanomaterials are able to produce assets of low imaging background, large anti-...
متن کاملOptimization of Optical Excitation of Upconversion Nanoparticles for Rapid Microscopy and Deeper Tissue Imaging with Higher Quantum Yield
Relatively low quantum yield (QY), time-consuming scanning and strong absorption of light in tissue are some of the issues present in the development of upconversion nanoparticles (UCNPs) for biomedical applications. In this paper we systematically optimize several aspects of optical excitation of UCNPs to improve their applicability in bioimaging and biotherapy. A novel multi-photon evanescent...
متن کاملBalancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities.
Upconverting nanoparticles (UCNPs) have recently shown great potential as contrast agents in biological applications. In developing different UCNPs, the characterization of their quantum yield (QY) is a crucial issue, as the typically drastic decrease in QY for low excitation power densities can either impose a severe limitation or provide an opportunity in many applications. The power density ...
متن کاملUpconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells.
BACKGROUND Photodynamic therapy (PDT) involves killing of diseased cells by excitation of photosensitizer chemicals with high-energy light to produce cytotoxic oxygen species from surrounding dissolved oxygen. However, poor tissue penetration of high-energy light and hydrophobic photosensitizers limits the effectiveness to superficial pathologies. Upconversion phosphor nanoparticles convert low...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 20 شماره
صفحات -
تاریخ انتشار 2013